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C O M P O S I T E  

UDC 536.2 

A new method for analytically solving a problem of steady-state heat conduction for multilayer composite 
wedge-shaped bodies is suggested based on a generalization of the integral MeUin transform. 

We consider a plane steady-state heat conduction problem for a periodically nonuniform composite body 
having the form of a sector with an aperture angle 200 and consisting of individual layers of the same thickness e (see 

Fig. 1). If we assume that the thermal conductivity coefficients '~rr, 200 within the limits of each layer are known 

functions of the variable r, then the heat flux density vector is of the form 

q = (qr, qo, qz), (1) 

~ OT ~ ;  1 OT 
q r - - - - . ~ r ;  , q 0 = - -  qz :=0 ,  

Or r O0 ' 

where )l~ ) = 2rr(P), 20(~) = 200(P) are singly periodic functions of the variable p = r/e, which may be called "rapid." 

On the basis of (1) we obtain the heat conduction equation 

1 _ 0  ( r}~rr (9) O@) l OaT O, (2) 
r dr +)~0a(9) r2 002 

whose solution is determined in the unbounded region 0<r< ao, 101 < 0o under the prescribed conditions at the wedge 

boundary (0 = + 0o). 

Since with the constant thermal conductivity coefficients ;trr and 200 the solution to the boundary-value 

problem of Eq. (2) can be obtained analytically using the integral Mellin transform [1 ], we are interested in an 

elaboration of the generalized Mellin transform by means of which it is possible to solve the boundary-value problem 

of Eq. (2) with the periodic coefficients 2rr(P) and 200(P). For this purpose we make use of a general scheme of the 

method [2 ] and consider the equation 

1 0 rA(p)  Ou ' = B ( p )  rZ 
r Or Ot 

with the singly periodic coefficients A(p) and B(p). The solution of (3) should be sought within the region 0<r<~, 

t>0 under the initial condition 

ult=o - f (r). (4) 

Having applied to (3) the Laplace transform with respect to the variable t, we get the ordinary differential 

equation 

1 d rA (p) ~ - -  p ~ B (p) ~ f (r), (5) 
r dr 

whose solution can be written as 
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Fig. 1. 

Here 

u(r ,  p ) =  1 f G ( r '  ~, p) B f(~) d~,. 
o~(p) ~ 

G(r, ~, p ) =  / u-i(r, p)u2(~, p), r~ -~ ,  

t U-lit, p)u=(r, p), r ~ ,  
o~ (p) --: rA (p) W (u,, u2), 

and W(ul, u2) is the Wronskian of the linearly independent solutions of Ul, u2 in the homogeneous equation (5). 
Passing on to the construction of the independent solutions of Ul, u2 for the homogeneous equation 

(6) 

r dr r ~ 

(7) 

we will seek them in series form with respect to the small parameter e [3, 4 ] 

= Uo (r) + ~ul (r, p) + ~2u~ (r, p) + ... (8) 

Substituting (8) into (7), it can be shown that the functions Ul (r, p) and u2(r, p) are defined in the following 

manner: 

u~(r, p) N~ (p) u; (r), u2(r, p) = N{2"(p)uo(r)-FN~2)(p) 1 �9  = - -  (ruo) , (9) 
r 

where u0(r) is the solution of the averaged equation 

~2 
u o ( r ) - l - l u o ( r ) - - P  rW " u o ( r ) = O  (• ( t 3 )  ( A - ' ) ) .  (10) 

r 

The local functions N1 (p), N~I)(P), N~2)fP) are the singly periodic solutions to the equations (0_<p___ 1) 

d ( A ( p ) @ _ +  A ( p ) ) = O ,  (i1) 
dp 

dN~ 1 
- -  - N ~ ( p ) ,  

d o  

d A ( O ) - -  + C 1  1 - -  
dp dp 

(12) 

B (p !  = o. (13) 
( B )  J 

Here 
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CI --=. A (p~. dN~- --t- /1 (p) :=-.~ 1 
dp ( A - I  ) 

1 

< B > = S 13 (o) dp 
0 

and the solutions of (11) and (12) satisfy the conditions 

( N 1 )  = 0 ,  (N~ l>) = 0 .  (14) 

If we now choose the independent  solutions for the averaged equation (10) in the form 

== r x V~, = r-XV~- up1 Up, , (15) 

then, in accordance with (8), (9), we obtain the following expressions for the linearly independent  solutions of the 
homogeneous equation (7): 

q- x~ r• + . . . ,  

u~ = r -•162 --- 8xVp?v'l (p) r -•162 -}- (16) 

+ e~ [(• + • V-fi)N~(p) + • e - , , ~ - 2  + ... 

Using (16) and taking into account (14), we get for the Wronskian W(u], u2): 

W (., ,  u~) .... 

Now, with allowance for (6), (17) we find 

rA (p) (17) 

1 . !. G(r ,  ~, p).B f (~)  d.~ 
u(r,  p ) =  2 •  o V p  ~ ' 

and passing in (18) to the original, we obtain 

(18) 

where the notation 

u(r, / ) :  1 i J(r' ~' t) B(~-~-~f(~) ~ 8 ] d_._~ (19) 
2• o ~ ' 

l o - k i  oo 

J(r,  ~, l ) = - -  ~ G(r, ~, p)ePZ/V-fidp. (20) 
2hi 

G - - i  r 

is introduced. 

The integrand in (20) has one branching point p = 0. Performing a cut along the real axis from -oo up to p -- 

0, it is possible to express J (r, ~, t) through integrals over the cut edges of the complex variable p. Using further the 
values of Ul and u2 according to (16), we find, after some transformations, the following expression for J (r, ~, t): 

Here 

J (r, ~, t) = - -  i r;m (r, p) ~-Prn (~, --p) eP"U~'dp = 
~i• .- 

~i• ,I - - I  o o  

r-Pro (r, ---p) ~'tn (~, p) eP'U'~'dp. 

p)=l rl + 

- ; )  + p NT' --7;- + ' 

(21) 

(22) 
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Now the unknown expansion is obtained on substituting (21) into (19), if we assume that in the last 

formula, in accordance with (4) ,  t = 0 

f ( r ) =  ( B ) I  2ztil ~ ( i \ ~ ~ ' ) .! r-Vm (r,----p) ~P-lm (~, p) f(~)B (--~, )d~ dp. (23) 
- -~  oo 

Thus, using Eq. (23), we obtain the formulas which determine the generalization of the integral Mellin 

transform as 

/(r) -- 2~--~ .f '-~'" (r, - - ; ) / ( p )  @, (24) 
- - ~  co 

1 ; ~ v - t m ( ~ ,  p)f(~)B(__~)d~" (25) 
7(p) = < B------f- 0 

Note that the function r-Pm (r, -p) is the approximate solution to the equation 

r dr • ~ 

which can be verified by differentiation of the expression r-Pm (r, -p) with account of the formula (22). 
On the basis of the obtained generalized integral Mellin transform of (24), (25), (22), we find the solution 

to the heat conduction equation of (2) within the region 0<r<~, 101 < 00 under the following boundary conditions 

(see Fig. 1): 

T(r ,  0 0 ) = f t ( r ) ,  T(r ,  - - 00 )= [~ ( r ) .  (27) 

Assuming that in the representations of (22), (24), (25), A(p) =2rrQg), B(p) =~00(P), we will seek the solution 

(2) in the form 

T (r, 0) -- 1 ioo 
2~i .f r-",n (r, --p) f (p, o) @. (28) 

Then, with allowance for (26) for the function T(p,0), we obtain the ordinary differential equation 

from which 

d"T (p, O) f f  
dO ~ + ~ "? (p, 0)=0, 

"F(p, O)=C(p)cosf-PO )-kD(p)sin(  pO ) 
I, ~ , ~ " 

(29) 

Substituting (29) into (28) and satisfying the boundary conditions of (27), we have the equalities 

- ) c ~ 1 t" r-Vm(r' --p)[C(p)cos % -+-D(p)sin dp= fl(r), (30) 
2~i -i~ 

' I ( %  t] 1 j" r-Pro (r, --p) C (p) cos - -  D (p) sin p00 dp = f2 (r). (31) 
2~i \ • / " --~tzo 

Applying the inverse transform of (25) to expressions (30) and (31), we arrive at a set of equations with 
respect to the functions C (p), D (p): 

\ • . 

(32) 
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0 

The solution of Eq. (32) yields 

C (p) ----- (l/2)[g~ (p) -1- g~. (P)] cos -1 

D(p)= (I/2)[gx(p)--g2(p)lsin-X ( P-~O~ ) . 
(33) 

Here 

1 S~P-~m(~, p)[~(~);~oo(---~-)d~ ( k = l ,  2). 
g h ( P ) =  (~,00> 0 

Thus, the formulas (28), (29), and (33) are the analytical solution of the heat conduction problem (2), (27) 

in a multilayer composite wedge. The nonuniformity character inside each of the layers is simulated by the functions 
Jlrr (P) and 20~(p). These functions, in particular, may have the nature of piecewise-constant functions, taking different 

values in regions of various components of the composite material. The behavior of these functions is manifested in 

the form of the solution of the local problems (11)-(14) and, through the local functions N1 (p), N~I)(p), N~2)(P), has 

an effect on the function re(r, p) (22), which enters into the solution formulas. It should be pointed out as well that 
in the limiting special case of uniform material (at constant ~-rr and 200), from the local problems of (11)- (14) it follows 

that all the local functions are equal to zero and the transformation of (24) and (25) with account of (22) is reduced 

to the integral Mellin transform. 

N O T A T I O N  

T, temperature; )]-rr, 200, thermal conductivity coefficients; e, thickness of composite material layers ( e<<l); 

N1 (p), N~D(p), N~2)(P), auxiliary local functions from the "rapid" variable p --- r/e; re(r, p), auxiliary function 

entering the core of the generalized integral Mellin transform; 00, half of the wedge aperture angle. 
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